

КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ АЛЬФАРАБИ ФАКУЛЬТЕТ ГЕОГРАФИИ И ПРИРОДОПОЛЬЗОВАНИЯ КАФЕДРА ЮНЕСКО ПО УСТОЙЧТИВОМУ РАЗВИТИЮ

Дисциплина «Биоразнообразие растений»

Вода как экологический фактор

Преподаватель: Садырова Гульбану Ауесхановна, д.б.н., доцент

Цель лекции:

Цель лекции — раскрыть сущность воды как экологического фактора для растений и животных, объяснить механизмы действия воды в растениях (поглощение, транспорт, транспирация) и классификацию экологических групп по водному режиму.

Действие воды в растениях:

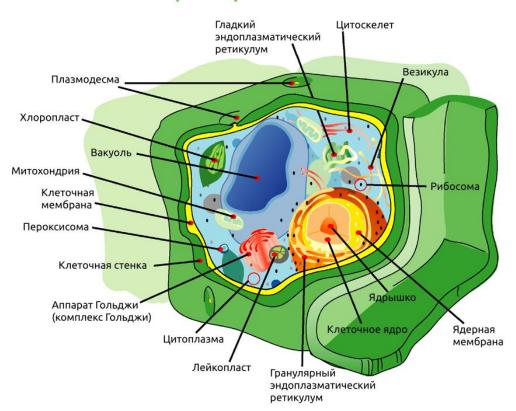
- содержание: 50–98 %, конституционная + растворённая;
- поглощение: корни (гидротропизм, микориза), корневое давление;
- транспирация: 97—99 % воды, устьичная/кутикулярная, регуляция. Экологические группы по водному режиму:
- гигрофиты: влажные местообитания, слабая регуляция;
- гидрофиты: водные, гетерофиллия;
- ксерофиты: засушливые, суккуленты/склерофиты;
- мезофиты: умеренное увлажнение, разнообразие.

Лекция посвящена двум ключевым вопросам:

- Действие воды в растениях содержание воды (50–98 %, формы: конституционная, в растворах, гомеостатическая), гидратура по Н. Вальтеру (1931), поглощение корнями (масса корней 20–90 %, рост 5–10 мм/сут, гидротропизм, микориза, корневое давление, транспирационный ток, влияние влажности, температуры, О₂, питания), водный режим местообитаний;
- 2. Экологические группы растений по отношению к водному режиму классификация по Шимперу и Вармингу (гигрофиты, мезофиты, ксерофиты, гидрофиты), по Шенникову (1950) как коллоидно-химические проблемы; гигрофиты (теневые/световые, гелофиты с аэренхимой, кочки), гидрофиты (гидатофиты, аэрогидатофиты, собственно гидрофиты, гетерофиллия), ксерофиты, мезофиты.

Эволюция жизни в воде

Жизнь зародилась в океане ~3,5 млрд лет назад: хемоавтотрофы → фотоавтотрофные бактерии (бескислородный фотосинтез) -> цианобактерии (выделение О₂). 2 млрд лет — разнообразие цианобактерий (многоклеточные нитчатые). 1,5 млрд эукариоты. 1 млрд — многочисленные эукариоты. 600 млн — многоклеточные слоевищные растения → водоросли. 400 млн — освоение суши в прибрежных экотопах. Вода — среда происхождения фотосинтеза, многоклеточности, эукариотичности.



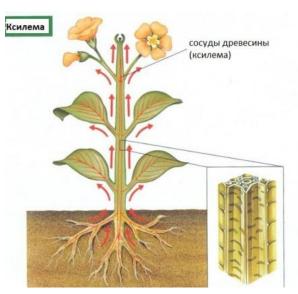
Содержание и формы воды

Растения состоят из воды на 50–98 процентов даже в состоянии анабиоза семена споры почвенные водоросли содержат воду без воды невозможен ни один процесс; формы воды включают конституционную химически связанную для набухания цитоплазмы растворённую в вакуолях и проводящих сосудах гомеостатическую как минимальное количество для поддержания гомеостаза.

Строение растительной клетки

Гидратура (Н. Вальтер, 1931)

Гидратура представляет собой степень насыщенности водой цитоплазмы клеток и организма в целом введена Н. Вальтером в 1931 году; при полностью насыщенной водяными парами атмосфере гидратура равна 100 процентам снижается при понижении влажности воздуха или повышении концентрации осмотически активных веществ в клеточном соке.



Корневые

волоски

Корневое давление

Корневое давление обеспечивает односторонний ток воды с растворёнными веществами независимо от транспирации благодаря осмотической и метаболической активности корней особенно важно ранней весной для сокодвижения и гуттации когда листья ещё не распустились.

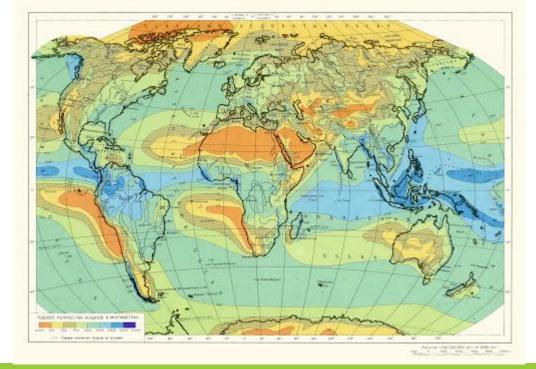
Факторы влияния на корни

Влияют влажность почвы температура кислород минеральное питание; распределение корней зависит от увлажнения горизонтов глубокие до грунтовых вод в аридных поверхностные для осадков формируют ярусность; в болотах дефицит О₂ приводит к аэренхиме от листьев до корней.

Транспирация

97—99 процентов поступившей воды расходуется на транспирацию через устьица и кутикулу с огромной энергией на испарение обеспечивает восходящий ток транспорт минералов органики охлаждение оптимальный фотосинтез перенос засухи.

Регуляция транспирации


Подчиняется физическим законам но регулируется устьицами при сухости транспирация растёт при дефиците воды падает; устьица открываются с ростом температуры закрываются выше оптимума ниже нуля после дождей механически паренхимой

Атмосферные осадки

Основной источник воды зависят от климата рельефа почвы формы дождь снег роса сезонное распределение; конденсационная влага критически важна в пустынях грунтовые воды доступны фреатофитам с глубокими

корнями.

Относительная влажность и другие формы

Относительная влажность процент от насыщения при данной температуре низкая вызывает запал листьев при суховеях; снег косвенно снеготаяние поемность пополнение почвы леса болота задерживают 85 процентов; роса туман иней 10–20 процентов осадков спасают в пустынях тропиках горах.

Классификация (Шимпер, Варминг)

В конце XIX века А. Шимпер и Е. Варминг выделили три группы сухопутных растений гигрофиты мезофиты ксерофиты плюс водные по Вармингу; основа для дробных классификаций; по А. П. Шенникову 1950 группы как коллоидно-химические проблемы растений.

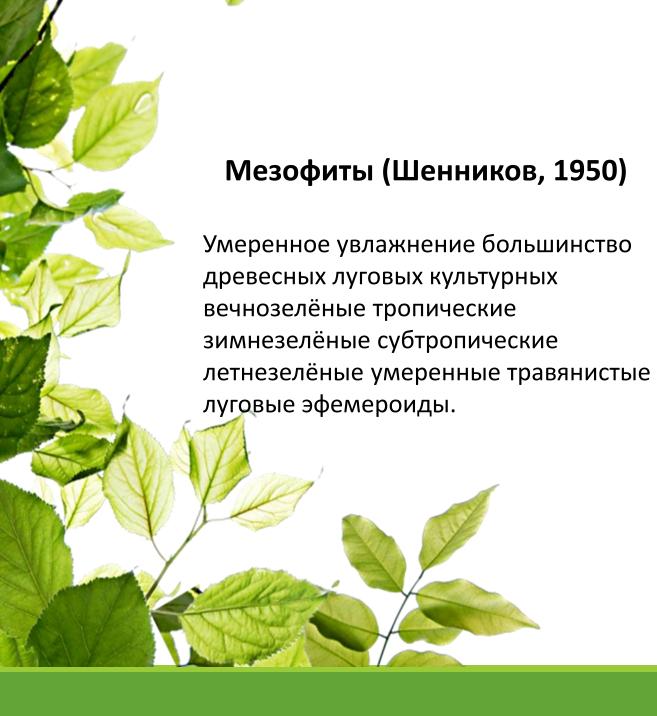
Гигрофиты

Растения влажных местообитаний без нужды ограничивать расход воды слабые корни крупные тонкие листья постоянно открытые устьица тонкая кутикула кутикулярная транспирация низкий осмотический потенциал слабые механические

ткани; теневые в тропиках лесах кислица недотрога световые на болотах калужница папирус.

Гидрофиты (Поплавская, 1948)

Водные макрофиты вторично освоившие воду; гидатофиты полностью погруженные роголистник аэрогидатофиты с плавающими листьями кувшинка собственно гидрофиты надводные камыш гетерофиллия у стрелолиста.


Ксерофиты (Бриггс, Шантц, 1914)

Растения засушливых мест избегающие засуху эфемеры мак уклоняющиеся фреатофиты верблюжья колючка выдерживающие суккуленты склерофиты

115 c.

Список использованной литературы

- Шаповалова А.А. Экология растений. Саратов, 2017. -125 с.
- Афанасьева Н.Ф., Березина Н.А. Экология растений. Москва, 2016. -
- Лемеза Н. А. Экология растений. Минск, 2018. 96 с.
- Кобланова С. А. Экология растений. 2017. 112 с.
- Родман Л.С.. География и экология растений [Электронный ресурс]: Учебное пособие. М: ТРАСЛОГ, 2018. 116 с.
- Килякова Ю.В.. Водные растения [Электронный ресурс]: практикум /Oренбургский гос. ун-т. Оренбург: ОГУ, 2013. 201 с.